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Abstract: Femtosecond laser drilling is used to produce a variable-
pressure fiber gas cell. Tightly focused laser pulses are used to produce
micrometer-diameter radial channels in a hollow-core photonic band-gap
fiber (HC-PBGF), and through these microchannels the core ofthe fiber
is filled with a gas. The fiber cell is formed by fusion splicingand sealing
the ends of the HC-PBGF to standard step-index fiber. As a demonstration,
acetylene is introduced into an evacuated fiber at multiple backing pressures
and spectra are measured.
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Hollow-core photonic band-gap fibers (HC-PBGF’s) are a unique class of photonic crystal
fibers that guide light in air [1]. Interest in HC-PBGF’s arises from the unmatched combi-
nation of tight confinement and interaction length, allowing for detailed investigations of both
intense and low-level light-matter interactions. Since the reduction of transmission losses in
HC-PBGF’s [2, 3], these fibers have found use in areas such as wavelength conversion, pulse
compression and delivery, gas sensing, and resonant optical interactions [4–11]. These applica-
tions all require the introduction of an alternative gas medium into the fiber air-core. Typically
in these experiments, the fiber is enclosed in a vacuum cell and light is coupled in and out of the
fiber through windows with microscope objectives. Recent work [13, 14], has focused on cre-
ating all-fiber gas cells using HC-PBGF’s. However, a compact system that allows for variable
filling of fibers over a wide range of pressures has yet to be achieved.

Here, we present a noninvasive approach to filling and evacuating HC-PBGF via a
micrometer-sized channel drilled through the fiber wall with focused femtosecond laser pulses.
With this process a very compact, low-loss, fiber gas cell canbe produced by splicing the ends
of the HC-PBGF to step-index fiber. The section of the fiber containing the microchannel is
sealed with epoxy in a small vacuum chamber, with the remaining fiber exposed allowing for
easy manipulation and light coupling. This HC-PBGF gas cellcan then be evacuated and filled
with gas at pressures both far below and far above one atmosphere.

Optical breakdown with tightly-focused ultrafast laser pulses can produce highly determin-
istic structural changes in transparent materials [15]. This mechanism has been used to induce
a change in refractive index for writing waveguides [16, 17]or to form vacancies [18] in fused
silica. Recent work has demonstrated the ability to create sub-micrometer diameter capillaries
in molded poly(dimethyl) siloxane [19], as well as in glass [20]. Unlike machining with an
excimer laser, the microexplosions produced by a femtosecond laser are a result of a multipho-
ton process [21], which allows for the production of large aspect ratio channels. With material
removal occurring only at the focus of the beam, the sample can be translated to make channels



with a length limited only by debris removal, which can be facilitated by adding a fluid that
wicks in the channel during drilling [22].

The system used for drilling is a commercial, regeneratively amplified Ti:Sapphire laser
(Spectra-Physics, Hurricane) capable of producing 90-fs,1-mJ, 800-nm pulses, at a 1-kHz
repetition rate. These pulses are focused through a Zeiss Neofluar 0.9-NA multi-immersion
objective onto the fiber. This objective has a correction collar designed for use with immersion
oil, water, and glycerine, which has an index of refraction similar to that of fused silica. The
fiber is held in index-matching fluid (n = 1.45) and translated through the focus of the objective
at a rate of 1µm/s using a Newport PM-500 stage at 100-nm step sizes. The index-matching
fluid acts both to reduce aberrations from tightly focusing into the cylindrical fiber and to assist
with debris removal by wicking into the forming capillary. Circularly-polarized light is used to
produce a more rounded hole through the fiber [24]. As an initial proof-of-principle demonstra-
tion, a microchannel is created in a Corning SMF-28E fiber. Bytranslating the step-index fiber
upward through the laser focus, drilling is performed from the surface toward the core of the
fiber. The threshold energy for surface void formation is found to be∼50 nJ. Microchannel for-
mation in conventional step-index fiber with femtosecond laser-irradiation followed by etching
has previously been demonstrated for potential sensing applications [23].
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Fig. 1. (a) Experimental setup for laser-drilling. (b) Schematic showing the drilling orientation for
HC-PBGF.

The presence of multiple glass-air interfaces poses a problem in transferring this method
to laser drilling through a HC-PBGF. To overcome the scattering and optical aberrations due
to these surfaces, index-matching fluid is continuously pumped through the core and the sur-
rounding capillaries of the fiber during the laser drilling.This fluid flow has the added benefit
of removing debris within the fiber core and the surrounding capillary structure. To take ad-
vantage of this flowing removal of debris, laser-drilling inthe HC-PBGF is performed from
the core to the surface (Fig. 1), so that any ejected debris isswept down the capillaries and
out of the fiber. After drilling, the index-matching fluid is removed by flushing the air-core and
surrounding capillaries multiple times with methanol and nitrogen gas, which re-establishes
optical transmission through the fiber. To determine the threshold energy required for vacancy
formation, a series of holes are drilled into a single lengthof HC-PBGF. SEM images of entry
holes produced with pulse energies between 50 and 280 nJ showlittle increase in hole diameter
with pulse energy. However, by imaging the fluid-filled fiber perpendicular to the drilling axis
during the drilling, additional structural damage is observed to occur at higher pulse energies.
Minimizing the energy required to form a microchannel in theHC-PBGF reduces the impact
on optical transmission caused by this collateral damage within the guiding structure. In the
work presented here, all channels are drilled with 80-nJ pulse energy, which is slightly above
threshold for void formation.

In order to be a viable means of filling and evacuating the HC-PBGF for gas-cell applications,
the microchannel must not substantially reduce the opticaltransmission of the fiber. To measure
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Fig. 2. (a) SEM image of HC-1550-02 fiber laser drilled with 80-nJ pulses. (b) Closeup image of
drilled capillary formed in the side of fiber, the surface diameter of the channel is 1.5µm.

the loss produced by drilling through the side of the fiber, a cutback method is employed. Six
evenly spaced holes are drilled over a 2-mm section of a 33-cmlength of HC-PBGF (Crystal
Fibre, HC-1550-02). Fusion splicing the HC-PBGF to a fiber-coupled broadband source allows
for a consistent measure of throughput without altering theinput coupling. Spectral transmis-
sion measurements are then taken before and after the laser-drilled region is cutback (Fig. 3).
The measured loss due to the drilled region of the fiber is found to be approximately 2.1 dB
from 1500-1550 nm. Since the intrinsic loss of the fiber at these wavelengths is negligible (¡
0.1 dB/m), this yields an estimated loss of 0.35 dB for a single drilled microchannel. We have
no explanation, at this time, for the spectral dependence ofthe loss due to the microchannels.

To create the hollow-core fiber cell, a microchannel is drilled from the core to the surface of a
HC-PBGF (Crystal Fibre, HC-1550-01), and the index-matching fluid is removed from the fiber
as described above. Each end of the HC-PBGF is then fusion spliced to step-index fiber using
the parameters recently described in the literature [25]. Holding the drilled section of the fiber
in a small vacuum chamber allows for a long, variable-pressure interaction length, while readily
connecting to fiber-coupled devices (see Fig. 4). After evacuating the system for 30 minutes to
a pressure of several mTorr, it is then filled at two differentbacking pressures. Several minutes
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Fig. 3.(a) Cutback measurements taken along the length of the fiber. The drilled section is located at
150 mm (gray). (b) Averaged HC-1550-02 spectral transmissionwith (red) and without (black) laser-
drilled section, both spectra are normalized to peak transmission before drilling. Subtracting these two
plots gives the loss due to the drilled section (dashed line).
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Fig. 4. Experimental setup for acetylene filling. The laser-drilledhole is held inside a vacuum cell,
which is evacuated with a roughing pump. The fiber jacket to vacuum chamber is sealed with a low
vapor-pressure epoxy resin.

following the introduction of acetylene a steady-state in pressure is achieved and transmitted
spectra are measured. As shown in the spectra normalized to the band-gap transmission of
the evacuated fiber, increased absorption occurs with increased pressure (see Fig. 5). These
spectra are consistent with similar measurements from previous HC-PBGF acetylene gas cell
work [13]. The measured loss through the system is found to be5.6 dB, which is due primarily
to the splice loss between the HC-PBGF and the step-index fiber.

In summary, we have used femtosecond pulses to drill microchannels into the side of a
hollow-core photonic band-gap fiber. As a demonstration of its capability as a fiber cell, acety-
lene spectra were measured at two different backing pressures. We also measured the loss due
to a single drilled microchannel to be approximately 0.35 dB. Still to be investigated are pos-
sible high pressure applications for this all-fiber variable-pressure gas cell, where a compact,
tunable source of nonlinearity is required. These include tunable gain in a Raman scattering
source or tunable pulse compression following a fiber laser.At low pressures this system has
the potential for a myriad of spectroscopic and gas sensing applications.
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Fig. 5. Vibrational-rotational spectra of acetylene filled HC-PBGF. These spectra are taken by
measuring transmission through a 72-cm length of hollow core fiber and are normalized to the fiber
band-gap transmission.
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